<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=3882185&amp;fmt=gif">
Skip to main content

Ashcroft's Blog

The Ashcroft blog provides helpful information about pressure and temperature instruments. Gain the knowledge you need to keep your business running!

Blog Feature

pressure gauge | Pressure Instruments

A pressure gauge is a mechanical instrument that is used to measure and monitor the pressure of air, gases or fluids in process, commercial and industrial systems. These devices operate using the system’s process, meaning they will give you a reading even when you have no power source. But to really understand pressure gauges and how they work, you need to start with the basics. Ashcroft has been making these instruments since 1852 and we wrote this article to give you a foundation of information that you can use as a reference. Read on to learn about the different types of pressure gauges (process, commercial, industrial, digital) and their functional components. Also become knowledgeable of gauge operating principles and construction, manufacturing standards, sensing and scale elements for various applications, dial options, and more. When you are done reading, you will also find additional resources that may interest you.

Blog Feature

pressure transducers | semiconductor industry

If you work in semiconductor manufacturing, you understand that the process requires highly specialized equipment and instruments that can handle harsh applications involving corrosive gases and chemicals. Transducers, for example, are critical for measuring pressure throughout the production process to control the flow and distribution of ultra-high purity (UHP) gases safely and effectively. However, not all transducers can handle such challenging conditions. That’s why selecting the right one for your operation is a critical step in ensuring the successful creation of your product. Ashcroft and our parent company Nagano Keiki Co. LTD, have a long and proven track record of supplying pressure and temperature instrumentation to semiconductor manufacturing customers worldwide. This article will share our insights into semiconductor UHP gas processes and the unique challenges for pressure measurement instrumentation used in semiconductor applications. It will also review the best types of pressure transducers that are designed for these complex processes.

Ashcroft–Blog Subscription (1)

Subscribe to Our Blog

Get the latest information about our products and services.

Blog Feature

pressure transducers | accuracy | pressure sensors | OEM | repeatability

What do race cars, off-highway vehicles (OHV) and any other high-performance machine or system have in common? They are only as good as the instruments you find under the hood. In fact, something as small as the pressure sensing device can have a big impact on the success or failure of meeting your equipment’s operational expectations. As an equipment builder, you expect your OEM pressure measurement instruments to be accurate. That’s a given. But even if it’s not top of mind immediately, what you want even more than accuracy is long-term repeatability. Ashcroft has been manufacturing pressure measurement instrumentation since 1852. So, we understand how challenging it can be to find high-quality, accurate and cost-effective instruments that go the distance to deliver consistent performance over the long term. This is especially relevant for sensors used in tough conditions involving exposure to wide temperature ranges, high cycle life expectations and vibration. Each of these could affect the accuracy and repeatability of critical pressure measurements. This article will explain the elements of an OEM pressure sensor, clarify the difference between repeatability and accuracy, and show you what makes a sensor accurate and repeatable over time. When you are done reading, you will know the key factors to look for when purchasing a high-performance pressure sensor for demanding cycle life conditions which can be common to many applications.

Blog Feature

Pressure Instruments | differential pressure gauge | Flow measurement

If you work in an industry with harsh process environments like oil and gas, water and wastewater and others, you know that liquid and gas flow measurement is critical to ensuring your operation runs safely and efficiently. You also know that purchasing a flow meter to perform this function can cost you thousands of dollars. One popular and very effective alternative is to configure a differential pressure (DP) gauge to measure flow. This simple step can deliver the same results and save you money. In this article, you will learn the basic concepts of fluid dynamics and pressure distribution based on Bernoulli’s Principle. You will also see why DP gauges are ideal for monitoring flow in harsh environments and how easy it is to configure these instruments to meet your specific needs. Since 1852, Ashcroft has been an industry leader in measurement instrumentation. As a product marketing leader, I am happy to share information that can help you discover solutions to your complex challenges. When you are finished, you will know how to configure your DP gauge to measure flow and be guided to other helpful resources that can help you find the right DP gauge for the job.

Blog Feature

thermocouple | Chemical/Petrochemical | Oil & Gas

Thermocouples are essential instruments designed to monitor temperature in critical applications involving harsh conditions, extreme weather and high-vibration environments. They are often used in automation, power, pharmaceuticals, life sciences, clean-in-place, refining, and chemical system installations. When configured to meet the demands of equipment like turbine systems, gas compressors, pumps and other equipment, the main function of the thermocouple is to provide clear and reliable signals to communicate whether a system is working properly, or not. In doing so, these instruments help reduce downtime, lower maintenance costs and increase productivity. A key part of the configuration process is selection of the correct junction type for optimal sensor performance. My knowledge in this area is based on 20 years of experience working as an engineer specializing in temperature measurement instruments. In this article, you will learn about the different thermocouple components, including two of the most common types of junctions: grounded and ungrounded. You will also learn the advantages of each junction type, and which is preferable for different applications. When you are done reading, you will have a clear understanding of the best junction to select for your specific needs.

Blog Feature

pressure switch | temperature switch | mechanical switch

By: Bobby Gemelas, Product Manager
November 27th, 2023

If you work in an industry that relies on pressure switches or temperature switches you know that these small devices play a big role in making sure your applications run smoothly and efficiently. But at what price? The short answer is between $50 - $1500. Not helpful, I know. But, if you Google how much these instruments cost, you will be hard-pressed to find an accurate answer. The reason is simple. There are so many factors that go into the price of a switch, it’s nearly impossible to provide any kind of estimate without knowing your specific requirements. As a product manager for industrial switches at Ashcroft – a recognized global leader in temperature and pressure instrumentation - I can help you get closer to a more precise answer. However, keep in mind, this topic covers a lot of ground. So, for the purposes of this article, we will focus on pressure and temperature switches used in industrial applications. When you’re done reading, you will be able to validate the price range you are currently paying. You will also know what to expect if you are searching for a new supplier. Finally, you will be more prepared to make a pressure switch or temperature switch purchasing decision, whether you work with Ashcroft or not.