<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=3882185&amp;fmt=gif">
Skip to main content

Ashcroft's Blog

The Ashcroft blog provides helpful information about pressure and temperature instruments. Gain the knowledge you need to keep your business running!

Blog Feature

Pressure Instruments | pressure switch | mechanical switch

A pressure switch is a control device that senses changes in pressure and mechanically opens and closes an electrical circuit at a pre-determined point. Unlike other pressure instruments like pressure gauges and pressure sensors that measure and monitor pressure, switches are a bit more complicated. Ashcroft is an industry leader in pressure measurement instrumentation and created this article to provide a basic foundation of information about switches for the industry novice. Read on to learn about the different types of pressure switches, common applications, how they operate, key terms, switch accuracy, activation methods and more. When you’re done reading, you will also find additional resources about switches that may interest you.

Blog Feature

Transducer | pressure transducers | Pressure Instruments | pressure transmitter

A pressure transducer, which can also be referred to as a pressure transmitter or pressure sensor, is an electronic device that measures and monitors the air, gas or liquid pressure flowing through industrial systems. Although they appear small, these instruments are built with advanced technology to provide accurate and reliable pressure measurements at different stages of the process. Ashcroft is an industry leader in pressure measurement instrumentation and created this article to provide a basic foundation of information about transducers for the industry novice. Read on to learn how they work and where they are used. You will also get a high-level overview of the different types of sensors, manufacturing standards, sensor accuracy and more. When you are done reading, you will also find additional resources about transducers that may interest you.

Ashcroft–Blog Subscription (1)

Subscribe to Our Blog

Get the latest information about our products and services.

Blog Feature

pressure gauge | Pressure Instruments

A pressure gauge is a mechanical instrument that is used to measure and monitor the pressure of air, gases or fluids in process, commercial and industrial systems. These devices operate using the system’s process, meaning they will give you a reading even when you have no power source. But to understand pressure gauges and how they work, you need to start with the basics. Ashcroft has been making these instruments since 1852 and we wrote this article to give you a foundation of information that you can use as a reference. Read on to learn about the different types of pressure gauges (process, commercial, industrial, digital) and their functional components. Also become knowledgeable of gauge operating principles and construction, manufacturing standards, sensing and scale elements for various applications, dial options, and more. When you are done reading, you will also find additional resources that may interest you.

Blog Feature

Pressure Instruments | differential pressure gauge | Flow measurement

If you work in an industry with harsh process environments like oil and gas, water and wastewater and others, you know that liquid and gas flow measurement is critical to ensuring your operation runs safely and efficiently. You also know that purchasing a flow meter to perform this function can cost you thousands of dollars. One popular and very effective alternative is to configure a differential pressure (DP) gauge to measure flow. This simple step can deliver the same results and save you money. In this article, you will learn the basic concepts of fluid dynamics and pressure distribution based on Bernoulli’s Principle. You will also see why DP gauges are ideal for monitoring flow in harsh environments and how easy it is to configure these instruments to meet your specific needs. Since 1852, Ashcroft has been an industry leader in measurement instrumentation. As a product marketing leader, I am happy to share information that can help you discover solutions to your complex challenges. When you are finished, you will know how to configure your DP gauge to measure flow and be guided to other helpful resources that can help you find the right DP gauge for the job.

Blog Feature

Pressure Instruments | Hydrogen | RTD | thermocouple | safety features | ultra high pressure

By: Jerry Brzeczek
November 13th, 2023

If your business currently depends on fossil fuel, you may be thinking about transitioning to a cleaner energy solution like hydrogen because it has less impact on the environment. While hydrogen may be a great solution for electric trucks, cars, buses and materials handling equipment, it is important to understand the unique standards and safety requirements for the production and transportation of this highly combustible substance. Temperature sensors used in hydrogen applications must adhere to rigid standards to maintain a safe working environment. For decades, Ashcroft has been offering a wide range of temperature sensors to clients in a variety of fields, including hydrogen fuel production. Using the knowledge we have gained, we are able to guide customers to the best solution for their needs. In this article, we’ll touch on the advantages of hydrogen energy, its risks and challenges, and some real-world examples of how sensors are used in hydrogen environments.

Blog Feature

pressure transducer | Pressure Instruments | Hydrogen | safety features | ultra high pressure

If you work in an industry that involves hydrogen, or other volatile substances, you understand the dangers that you and your team face daily. But do you know that any equipment used in these environments (aka hazardous locations) must meet certain requirements and be designed to help contain or prevent a fire or explosion from occurring in the first place? For example, certain pressure sensors like the E2F Flameproof and E2S Intrinsically Safe pressure transducers are built to withstand or prevent explosions and fires in hazardous locations. This makes them effective options for managing pressure in complex industrial applications. Ashcroft is a recognized leader in pressure and temperature instrumentation and has been for more than a century and a half. In my role as product leader, I am familiar with the complex nature of hydrogen and have been educating customers on how to select the best sensors to meet the stringent quality and safety requirements for highly combustible environments. This article will explain the factors and classifications of a hazardous location, the product certifications that are required for use in these environments and the solutions available to help keep you and your team safe. When you are done reading this article, you will have a better understanding of what type of pressure transducer you will need for your application and be ready to take the next step in your purchasing decision.