<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=3882185&amp;fmt=gif">
Skip to main content

Ashcroft's Blog

The Ashcroft blog provides helpful information about pressure and temperature instruments. Gain the knowledge you need to keep your business running!

Blog Feature

Thermowells | Wake Frequency | Vortex Thermowell

If you work in process industries like oil and gas or chemical/petrochemical, you know that a thermowell is a critical component that can help ensure the safe operation of your systems. That's because it is the thermowell's job to protect the temperature monitoring instruments from system pressure, high-velocity flow and corrosive media. However, keep in mind that selecting the wrong thermowell to do the job can have negative consequences that will put the safety of your process and your people at serious risk. Ashcroft has been in the temperature measurement business for decades. As the firm's temperature product manager, I know that flanged thermowells are typically the preferred choice for these applications because of their design and cost. In reality, though, even when the cost feels prohibitive, there are certain situations where a Vortex Thermowell may be your only option. In this article, you will learn about the forces that can make a thermowell fail and the factors to consider when determining whether the Vortex Thermowell is worth the added expense. You will also get links to additional resources related to this topic that may be of interest to you.

Blog Feature

RTD | temperature sensor | thermocouple

In a recent Understanding the Basics blog article, we reviewed how temperature is measured in industrial applications using different types of thermometers. In this article, we will focus on the temperature sensors used to measure temperature in original equipment manufacturing (OEM) systems, light industrial processes or even more complex applications. No matter what the purpose, inaccurate temperature measurements can have serious consequences for your entire operation, so you'll want to be sure you use accurate and reliable instruments to do the job. If you are new to OEM applications or simply need a refresher on the basics of temperature sensors, you've come to the right place. Here we will review different types of temperature sensors, how they work, and what to look for when selecting the best option for your specific needs. At the end of the article, you will find additional resources related to temperature measurement that may interest you.

Ashcroft–Blog Subscription (1)

Subscribe to Our Blog

Get the latest information about our products and services.

Blog Feature

pressure gauge | Pressure Instruments

This article was originally published on June 9, 2021, and was updated on March 4, 2024. Pressure gauges play a critical role in your process applications. They accurately and reliably measure and monitor pressure to determine if process systems are working effectively and efficiently, or if you need to make system alterations or adjustments. This helps ensure the safety of your personnel, the efficiency of your processes and the quality of your products. But what happens when your pressure gauges stop working? Your entire operation is at risk. That's why periodic instrument audits are good practice. Ashcroft has been conducting comprehensive instrument audits for 10 years. As the product lead for process gauges, I see the results of these audits and can tell you why instruments fail in the first place. The good news is that most of these “instrument killers” we've identified can be prevented if you know the warning signs. In this article, you will learn the primary indicators that tell you your pressure gauge may be failing and the 6 most common pressure gauge problems and solutions that we found in our instrument audits. When you are done reading, you will know what to look for and be prepared to address any of these issues ahead of time. Armed with this information, you will be able to keep your processes running safely, smoothly and effectively.

Blog Feature

Pressure Instruments | diaphragm seals

If you are new to the world of diaphragm seals or just want a refresher on how they work, you've come to the right place. A diaphragm seal (also known as an instrument isolator) is a protective mechanism that connects to the process side of a pressure measurement instrument. The primary function of a diaphragm seal is to prevent the sensing element of your pressure instrument from getting damaged by any corrosive process media or clogging in your application. Without using a diaphragm seal in place to protect your instrument, you will not be able to accurately and effectively measure the pressure in your system, putting your entire operation at risk. Why trust Ashcroft? We are an industry leader in pressure and temperature measurement instrumentation and are often asked for insight regarding the benefits of these instruments and how they work. In this article, I will review how diaphragm seals are used in different applications and provide links to additional resources in case you want to expand your knowledge on the subject further.

Blog Feature

pressure gauge | semiconductor industry | high purity

When you think of semiconductors, you may picture all the ways they make our lives easier. After all, we rely on semiconductor applications every day for conveniences like cell phones, computers, cars and other electronic devices. But for those of you who work in semiconductor manufacturing, you also know the demanding and challenging nature of making them. The hazardous nature of the manufacturing process requires stringent protocols, approvals and specialized equipment that can perform with precision and accuracy under harsh conditions. So, when it comes to monitoring the distribution of ultra-high purity (UHP) gases flowing through the process, choosing the right pressure gauge is critical. As a product lead at Ashcroft – a recognized authority in pressure and temperature instrumentation - I have been working with Ultra High Purity (UHP) Pressure Gauges for several years. In my role, I am often asked how to choose the right UHP gauge for these kinds of applications. Of course, my answer is, it depends. In this article, I will review how and where semiconductors are made, the role UHP gases play in the manufacturing process and the specific features you will need when choosing a pressure gauge for UHP applications. When you are finished reading, you will also see additional resources that you can use as a reference on the topic of high purity.

Blog Feature

pressure gauge | Pressure Instruments | pressure sensors

If you are working in an industry that requires instrumentation to measure and monitor pressure in a system, you already know the basic principle of pressure measurement. According to Pascal's Law, pressure is proportional to the force and inversely related to the area over which the force is applied. In other words, pressure is equal to force per unit area. Figure 1: Pressure Equation. Different systems and applications require different types of pressure measurement instruments. For example, mechanical pressure gauges may be used as visual indicators of pressure levels throughout a process. Conversely, pressure transducers or transmitters can sense changes in a system’s pressure and send a signal to a control room. If you are new to your industry and want to learn more about pressure instruments, this article will give you a high-level overview of how to read pressure, definitions of pressure types and the instruments used to measure pressure. Ashcroft is a recognized global leader in pressure instrumentation and is a trusted authority for related information. When you are done reading, you will find additional resources related to pressure measurement that may interest you.