<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=3882185&amp;fmt=gif">
Skip to main content

Blog

Ashcroft's Blog

The Ashcroft blog provides helpful information about pressure and temperature instruments. Gain the knowledge you need to keep your business running!

Blog Feature

RTD | temperature sensor | thermocouple

Finding the right temperature sensor at a price that fits your budget can be a challenge. During an industrial project for a critical application that required both RTDs and thermocouples (two common types of temperature sensors), the buyer's main concern was cost. He had assumed these instruments were priced similarly. The reality is not all applications are the same and not all temperature sensors are created equal. A sensor designed to measure air temperature in a room is vastly different from one built to withstand 1,400 °C in a heat-treating furnace. The type of sensor, the environment it's used in and the level of accuracy or durability required can all influence the price. As a trusted leader in temperature and pressure measurement, we created this article to help you understand what really goes into the cost of a temperature sensor. Read this article to learn the top five cost drivers for temperature sensors so you can make a confident, cost-effective decision. By identifying what matters most to your application, you can avoid overpaying for unnecessary features—and feel confident that you’re selecting the right tool for the job. When you are done reading you will have a better idea of how much you can expect to pay for these instruments. Plus, you will see additional resources that can address other questions you may have about temperature sensors.

Blog Feature

temperature sensor | thermocouple | temperature measurement

By: Dave Dlugos, Product Technical Leader
January 15th, 2025

A thermocouple is a type of electrical temperature sensor that is used to measure and monitor temperature changes in process applications. Similar to resistance temperature detectors (RTDs), these sensors are designed to ensure accurate temperature readings in applications where precise temperature control is essential for safety and efficiency. As part of Ashcroft's Understanding the Basics series, this article will provide you with a high-level review of these instruments, including their origin, how they work for different applications and more. You will also gain insights about when to use (or not to use) this type of sensor and be directed to additional resources that can help you deepen your knowledge on the topic of temperature sensors. This information comes from 40 years of industry experience with temperature and pressure measurement, design, engineering, and product management, which includes 17 years working with Ashcroft - a leader in temperature and pressure instrumentation.

Ashcroft–Blog Subscription (1)

Subscribe to Our Blog

Get the latest information about our products and services.

Blog Feature

RTD | temperature sensor | temperature measurement

By: Dave Dlugos, Product Technical Leader
January 10th, 2025

Resistance Temperature Detectors (RTDs) are electrical temperature sensors used to measure and monitor temperature changes in process applications. These sensors are important for ensuring accurate temperature readings in industries such as manufacturing, aerospace and healthcare, where precise temperature control is essential for safety and efficiency. As part of Ashcroft's Understanding the Basics series, this article will provide you with a high-level review of these instruments, including how they work, how they are constructed, accuracy classes and more. You will also gain insights about when to use (or not to use) this type of sensor and be directed to additional resources that can help you deepen your knowledge on the topic of temperature sensors. This information comes from 40 years of industry experience with temperature and pressure measurement, design, engineering, and product management, which includes 17 years working with Ashcroft - a leader in temperature and pressure instrumentation.

Blog Feature

Industries and applications | Calibration | RTD | temperature sensor | accuracy

By: Dave Dlugos, Product Technical Leader
September 9th, 2024

This article was originally published on October 30, 2023, by Rick Zarafin and was updated by Dave Dlugos. In the article “Why and When is RTD Calibration Necessary?”, we explored how Resistance Temperature Detectors (RTDs), such as our S81 and S50 models, offer superior performance over thermocouples for temperature process measurements due to their high accuracy and repeatability. RTDs are particularly suitable for critical applications, including chemical and refining processes, where precise temperature measurements are essential. To fully grasp the importance of RTD calibration, it is crucial to understand the fundamental working principles of an RTD. As a leader in temperature and pressure instrument solutions, Ashcroft creates articles to address common questions from our customers. Our goal is to provide you with the information and tools you need to make informed decisions about your temperature measurement solutions. In this article, you'll learn how RTDs work, gain knowledge about the different levels of accuracy achievable with RTDs, and see how to maintain and calibrate these devices to meet your specific needs. You will also receive links to additional resources to help deepen your understanding of these temperature measurement instruments.

Blog Feature

Industries and applications | RTD | temperature sensor | accuracy | Oil & Gas

This article was originally published on October 23, 2023, by Rick Zarafin and updated on August 19, 2024 by Dave Dlugos. As an industrial instrument designer, you are faced with a multitude of temperature measurement options to choose from. In addition to the commonly used infrared, bi-metal, gas-actuated thermometers and thermistors, to name a few. Each of these options stands out as a reliable choice for industrial automation and process applications. However, the instruments predominantly selected for industrial automation and process applications are thermocouples and Resistance Temperature Detectors (RTDs) because of their proven ability to provide accurate and reliable readings. Each of these sensors has unique advantages and can be configured to match the application needs for optimum service life and performance. Based on my experience working with instrumentation and reliability teams, I’ve seen and compared the benefits of both options. Thermocouples, for example, are often chosen for a robust signal, cost-effective price and ability to withstand most process plant specifications, including harsh vibration and high-temperature range up to 2300° C. RTDs, on the other hand, are the top choice for applications demanding higher accuracy levels and minimal drift. In this article, you will learn about the advantages of RTDs and the significance of RTD calibration in ensuring precise and consistent readings for an extended lifespan. You will also be directed to additional resources to help deepen your knowledge about these instruments and their applications.

Blog Feature

Calibration | temperature sensor | thermocouple | pharmaceutical and biotechnology | chemical industry | Chemical/Petrochemical | Oil & Gas | Power/Energy

This article was originally published on August 23, 2023, by Rick Zerafin and was updated on June 26, 2024, by Dave Dlugos. Consistently accurate temperature measurements are vital to several industrial processes in numerous industries from construction to energy to manufacturing. Although many instruments can measure the temperature of gas and liquid in these processes, thermocouples are among the most popular thanks to their simple design and versatility. Over time, however, the thermocouple’s performance may tail off for any number of reasons. Two of the most common are drift and elevated temperature. As a leading authority in temperature measurement instrumentation, we help customers understand the factors to consider when selecting instruments and the steps needed to keep systems running efficiently. If your process includes temperature measurement with a thermocouple, this article will explain why it is important to calibrate your instrument and how to do it. You will also get access to helpful resources that can help you gain deeper knowledge on the subject of temperature sensors.