Thermowells | RTD | thermocouple
By:
Dave Dlugos, Product Technical Leader
December 18th, 2024
In a previous Understanding the Basics blog, I provided an overview of temperature sensors, including RTDs and thermocouples. That article explained how they are used to measure the temperature of original equipment manufacturing (OEM) systems, light industrial processes or other complex applications. Since that piece was published, we have received more questions about RTDs and Thermocouples and the lag options you have when ordering these instruments.
Thermowells | Bimetal Thermometers | RTD
By:
Tino Goncalves, Temperature Product Manager
October 7th, 2024
Whether your industrial process involves challenging environments or everyday conditions, you will likely use a thermowell to prevent your temperature instrumentation from getting damaged. Without protection, it is easy for these sensors to become inoperable. One challenge field operators face with a thermowell is calculating the stem length to properly fit a thermometer or electronic temperature sensor. The Ashcroft technical team is often asked how this is done, so we created this article as a point of reference for you. Continue reading to learn about the different types of thermowells, factors to consider when selecting the right thermowell for your application, how they connect to the process piping and more. When you are done reading, you will also find additional resources that may interest you.
Get the latest information about our products and services.
Industries and applications | Calibration | RTD | temperature sensor | accuracy
By:
Dave Dlugos, Product Technical Leader
September 9th, 2024
This article was originally published on October 30, 2023, by Rick Zarafin and was updated by Dave Dlugos. In the article “Why and When is RTD Calibration Necessary?”, we explored how Resistance Temperature Detectors (RTDs), such as our S81 and S50 models, offer superior performance over thermocouples for temperature process measurements due to their high accuracy and repeatability. RTDs are particularly suitable for critical applications, including chemical and refining processes, where precise temperature measurements are essential. To fully grasp the importance of RTD calibration, it is crucial to understand the fundamental working principles of an RTD. As a leader in temperature and pressure instrument solutions, Ashcroft creates articles to address common questions from our customers. Our goal is to provide you with the information and tools you need to make informed decisions about your temperature measurement solutions. In this article, you'll learn how RTDs work, gain knowledge about the different levels of accuracy achievable with RTDs, and see how to maintain and calibrate these devices to meet your specific needs. You will also receive links to additional resources to help deepen your understanding of these temperature measurement instruments.
Industries and applications | RTD | temperature sensor | accuracy | Oil & Gas
By:
Dave Dlugos, Product Technical Leader
August 19th, 2024
This article was originally published on October 23, 2023, by Rick Zarafin and updated on August 19, 2024 by Dave Dlugos. As an industrial instrument designer, you are faced with a multitude of temperature measurement options to choose from. In addition to the commonly used infrared, bi-metal, gas-actuated thermometers and thermistors, to name a few. Each of these options stands out as a reliable choice for industrial automation and process applications. However, the instruments predominantly selected for industrial automation and process applications are thermocouples and Resistance Temperature Detectors (RTDs) because of their proven ability to provide accurate and reliable readings. Each of these sensors has unique advantages and can be configured to match the application needs for optimum service life and performance. Based on my experience working with instrumentation and reliability teams, I’ve seen and compared the benefits of both options. Thermocouples, for example, are often chosen for a robust signal, cost-effective price and ability to withstand most process plant specifications, including harsh vibration and high-temperature range up to 2300° C. RTDs, on the other hand, are the top choice for applications demanding higher accuracy levels and minimal drift. In this article, you will learn about the advantages of RTDs and the significance of RTD calibration in ensuring precise and consistent readings for an extended lifespan. You will also be directed to additional resources to help deepen your knowledge about these instruments and their applications.
RTD | temperature sensor | thermocouple
By:
Dave Dlugos, Product Technical Leader
March 6th, 2024
In a recent Understanding the Basics blog article, we reviewed how temperature is measured in industrial applications using different types of thermometers. In this article, we will focus on the temperature sensors used to measure temperature in original equipment manufacturing (OEM) systems, light industrial processes or even more complex applications. No matter what the purpose, inaccurate temperature measurements can have serious consequences for your entire operation, so you'll want to be sure you use accurate and reliable instruments to do the job. If you are new to OEM applications or simply need a refresher on the basics of temperature sensors, you've come to the right place. Here we will review different types of temperature sensors, how they work, and what to look for when selecting the best option for your specific needs. At the end of the article, you will find additional resources related to temperature measurement that may interest you.
Bimetal Thermometers | RTD | thermocouple | thermometer | gas-actuated thermometer
By:
Dave Dlugos, Product Technical Leader
February 14th, 2024
All industrial applications use some kind of temperature instrument to ensure process temperatures stay within an acceptable range. Choosing the right device can help protect your equipment and your operators from extreme temperature shifts. However, the type of instrument you use will depend on many factors, including the temperature limits of the operation and the instrument, the required output and more. As a global leader in temperature and pressure instrumentation, Ashcroft created this article as a high-level overview of industrial temperature measurement options. If you are an industry novice or just want a refresher on the basics, this can serve as a good reference piece. Read on to learn about the different types of industrial temperature instruments, how they work, where they are used and why you might choose one over another. When you are done reading, you will find additional resources related to temperature measurement that may interest you.